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Abstract
Weakly nonlinear interactions between wavepackets in lossless periodic
dielectric media are studied based on the classical nonlinear Maxwell equations.
We consider nonlinear processes such that: (i) the amplitude of the wave
component due to the nonlinearity does not exceed the amplitude of its linear
component; (ii) the spatial range of a probing wavepacket is much smaller than
the dimension of the medium sample, and it is not too small compared with
the dimension of the primitive cell. These nonlinear processes are naturally
described in terms of the Bloch modes and the dispersion relations of the
underlying linear periodic medium. It turns out that only a few triads of
modes have significant nonlinear interactions. They are singled out by the
frequency and phase matching conditions and, as we show, by an additional
selection rule: the group velocity matching condition. The latter condition is
the most important selection rule for the nonlinear regimes. We give a complete
quantitative classification of all possible significant interactions for quadratic
nonlinearities. The classification is based on a universal system of indices
reflecting the intensity of nonlinear interactions. The obtained classification
points to the second harmonic generation as being one of the stronger nonlinear
interactions, and often the strongest one.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The effect of the spatial periodicity on nonlinear optical processes, especially of media with
a quadratic nonlinearity, has been the subject of intensive studies in physical literature [1–
4, 8–10, 13–15, 20–24, 30, 33, 34, 36, 37, 40–42, 44, 45, 48–50, 52, 53, 58, 63, 65] and
references therein. In this paper we essentially finalize the classification of weakly nonlinear
interactions for quadratic nonlinearities within the framework developed in the preceding
paper [12]. In particular, we introduce a natural extension of the group velocity concept to
singular points where the standard group velocity does not apply. This allows us to single out
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the group velocity matching condition (GVC) as a universal and most important selection rule
for significant weakly nonlinear interactions.

We study weakly nonlinear phenomena satisfying the following basic conditions: (i) the
amplitude of the wave component due to the nonlinearity does not exceed the amplitude of
its linear component and (ii) the wavepacket spatial range is much smaller than the dimension
of the medium sample, and it is not too small compared with the dimension of the primitive
cell. These phenomena can be naturally studied based on the underlying linear medium as
a reference frame. We would like to point out that weakly nonlinear phenomena do not
require small nonlinear susceptibilities which can be whatever they happen to be. The term
‘weak’ rather refers to appropriately small initial amplitudes of the electromagnetic (EM)
wave. Under this condition, and in the presence of nonlinearities the linear wave evolution
undergoes incremental changes until the nonlinear effects accumulate to a level comparable to
the level of the relevant linear wave.

It is assumed that the electromagnetic wave propagation is described by the classical
Maxwell equations

∇ × E(r, t) = −1

c
∂tB(r, t) − 4π

c
JM (r, t), ∇ · B(r, t) = 0, (1)

∇ × H(r, t) = 1

c
∂tD(r, t) +

4π

c
JE (r, t), ∇ · D(r, t) = 0, (2)

where H , E, B and D are respectively the magnetic and electric fields, magnetic and electric
inductions, and JE and JM are the excitation electric and, so-called, excitation magnetic
currents (current sources). It is also assumed that there are no free electric and magnetic
charges, and, consequently, the fields B and D are divergence free as indicated in equations (1)
and (2). Equations (1) and (2) readily imply that the excitation electric and magnetic currents
are also divergence free, i.e.

∇ · JE (r, t) = 0, ∇ · JM(r, t) = 0. (3)

We use the excitation currents primarily to generate wavepackets playing the key role in the
analysis of nonlinear phenomena. For simplicity we consider nonmagnetic media, i.e.

B(r, t) = µH(r, t), µ = 1. (4)

The material relations between D and E are assumed to be of the standard form [16]

D = E + 4πP (r, t; E) (5)

where the polarization P includes both the linear and the nonlinear parts

P (r, t; E(·)) = P (1)(r, t; E(·)) + PNL(r, t; E(·)). (6)

The nonlinear part PNL(r, t; E(·)) is often assumed to be homogeneous in E(·) of the order
h � 2, h = 2 for a quadratic and h = 3 for a cubic nonlinearity [16, 17]. To quantify the
relative impact of the nonlinearity we introduce a dimensionless constant α0 and scale all the
fields as follows:

JE → α0JE , JM → α0JM , E → α0E,

D → α0D, H → α0H, B → α0B.
(7)

Then the magnitude of the rescaled nonlinearity P̃NL(Ẽ) is of order α = αh−1
0 for α0 � 1,

and the material relation becomes

D = E + 4π[P (1)(r, t; E(·)) + αPNL(r, t; E;α)], α = αh−1
0 � 1 (8)
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where α � 1 measures the relative magnitude of the nonlinearity. We allow for PNL a general
analytic dependence in E with h0 � 2 being the order of the leading term, namely

PNL(r, t; E) = P (h0)(r, t; E) +
∞∑

h>h0

P (h)(r, t; E; α) (9)

where P (h)(E) are h-linear (tensorial) operators. In view of (8), the leading term P (h0)(E)

does not depend on α. According to the classical nonlinear optics, see [16] (section 2), P (h)

has the following form:

P (h)(r, t; E(·); α) =
∫ t

−∞
. . .

∫ t

−∞
P(h)(r; t − t1, . . . , t − th; α)

...

h∏
j=1

E(r, t j) dt j , (10)

where P(h) is the so-called h-order polarization response function. For fixed r and t − t j the
quantity P (h) is an h-linear tensor acting on the components of E(r, t j ). This form of the
polarization response function in (10) takes explicitly into account two fundamental properties
of the medium: the time-invariance and the causality [16] (section 2).

The linear part P (1)(r, t; E(·)) of the total polarization is given by

P (1)(r, t; E(·)) = χ(1)(r)E(r, t) (11)

where χ(1)(r) is the tensor of linear susceptibility. For simplicity of rigorous argumentation
we assume that χ(1)(r) does not depend on the frequency that, from physical point of view,
efficiently binds us to a certain frequency range. We would like to emphasize that this
simplifying assumption does not affect the analysis of nonlinear interactions since it takes
as a ‘starting point’ the dispersion relations of the linear medium, whatever they happen to
be [12].

It is preferable to deal with divergence-free fields [12], and for that reason we choose D
to be our basic field. To implement this, we recast (8) as

E(r, t) = η(1)(r)D(r, t) − αS(r, t; D; α), (12)

η(1)(r) = [ε(1)(r)]−1, ε(1)(r) = 1 + 4πχ(1)(r), (13)

where ε(1)(r) and η(1)(r) are respectively tensors of the dielectric permittivity and the
impermeability. The latter is commonly used in the studies of the electro-optical effects
(Pockels and Kerr effects) [62] (section 7), [47] (sections 6.3, 18.1).

The dielectric properties of the periodic medium are assumed to vary periodically in space.
In other words, the tensors χ(1)(r), η(1)(r) and PNL(r, t; E; α), S(r, t; D; α) are periodic
functions of the position r. In particular, if the lattice of periods is cubic with the lattice
constant L0, and Z

3 is the lattice of integer valued vectors n, then the following periodicity
conditions hold for every n from Z3:

η(1)(r + L0n) = η(1)(r), P(h)(r + L0n; t1, . . . , th; α) = P(h)(r; t1, . . . , th; α). (14)

Substituting E determined by (12) into the Maxwell equations (1), (2), we rewrite them in the
following concise form:

∂tU = −iMU + αFNL(U) − J; U(t) = 0 for t � 0, (15)

where

U =
[

D

B

]
, MU = i

[ ∇ × B

−∇ × (η(1)(r)D)

]
, (16)

J = 4π

[
JE

JM

]
, FNL(U) =

[
0

∇ × S(r, t; D)

]
, (17)
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Figure 1. Impressed current J in the form of wavepacket of amplitude of order � and of time
length of order 1/� causes the medium nonlinear response. Based on this response we estimate
the rates of energy exchange between different modes.

assuming everywhere that all the fields D, B, JE and JM are divergence free. We also assume
that the medium is at rest for all negative times by requiring the excitation currents J to vanish
for all negative times, i.e.

J(t) = 0 for t � 0. (18)

Observe that in the operator form (15) of the Maxwell equations the parameter α determines
the relative magnitude of the nonlinearity, and, in particular, if α = 0 the medium evidently
becomes linear.

1.1. Outline of the nonlinear interaction classification

In this section we provide a less technical outline of our approach to the classification of
nonlinear interactions. For the clarity of the argument we assume the photonic crystal to occupy
the entire space. The approach begins with probing the dielectric medium with the excitation
current J of sufficiently small amplitude α0 and of the relative bandwidth � ∼ �ω/ω0, where
�ω is the frequency bandwidth of the wavepacket and ω0 is its carrier frequency (see figure 1).

The medium response U(t) to the excitation current J has the form

U(t) = U (0)(t) + αU (1)(t) + O(α2), (19)

where U (0)(t) is the linear medium response and U (1)(t) is the first nonlinear response. The
first nonlinear response U (1)(t) becomes appreciable for times t � �−1.

To classify nonlinear interactions between the modes we study the first nonlinear response
U (1) and its behaviour as � → 0. The first step is to decompose all the fields with respect to the
Bloch modes of the underlying medium. These modes are parametrized by (n̄,k) where n̄ is
the band number and k is the quasimomentum. It is well known that for a quadratic nonlinearity
the energy exchange between the modes occurs through triads of modes (n̄,k), (n̄′,k′) and
(n̄′′,k′′) with the corresponding dispersion relations ωn̄(k), ωn̄′(k′) and ωn̄′′(k′′). In view of
the phase matching condition, we always have k′′ = k − k′. To analyse the interactions, we
look at the impact of the modes (n̄′,k′) and (n̄′′,k − k′) on the mode (n̄,k), and see that
the amplitude of the first nonlinear response Ũ (1)

n̄ (k) depends on the amplitudes of the linear
response Ũ (0)

n̄′ (k′) and Ũ (0)
n̄′′ (k − k′). Let us denote the contribution of amplitudes Ũ (0)

n̄′ (k′)
and Ũ (0)

n̄′′ (k − k′) to the amplitude Ũ (1)
n̄ (k) by Ũ (1)(n̄, n̄′, n̄′′,k′,k). It is shown in [12] that if

� → 0 the first nonlinear response U (1) vanishes as a power of �, namely

Ũ (1)(n̄, n̄′, n̄′′,k′,k) ∼ �q , � → 0 where 0 < q � ∞. (20)

If, for instance, the modes (n̄,k), (n̄′,k′) and (n̄′′,k′′) are chosen ‘at random’ then the above
index q is infinite and, consequently, the mode interaction is weaker than any power of �

as � → 0. But for special choices of triads the corresponding indices q can be finite with more
appreciable nonlinear interactions. These stronger interacting modes can be singled out with
the help of two selection rules based on the corresponding phase function

φ�n(k,k′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′), (21)
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which explicitly takes into account the so-called phase matching condition k′′ = k − k′.
The two selection rules are the frequency matching condition (FMC)

φ�n(k,k′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′) = 0, (22)

and the GVC

∇ωn̄′(k′) = ∇ωn̄′′(k − k′), (23)

with the latter following from the stationary phase requirement ∇k′φ�n(k,k′) = 0.
The relative significance of the two rules is based on their impact on the indices q . As it is

shown in [12], if a triad of modes does not satisfy the GVC (23) then, regardless of whether the
FMC (22) is satisfied or not, its index q = ∞, and, hence, the mode interaction is weaker than
any power of �. In contrast, if GVC (23) is satisfied then, regardless of whether the FMC (22)
is satisfied or not, the index q can be finite. The FMC (22) though can improve the index by 1
if it is met. In particular, if we seek the strongest nonlinear interaction and the two conditions
GVC and FMC cannot be met simultaneously, then GVC is more important to comply with.
All possible values for the indices of interaction together with the corresponding canonical
polynomial forms for the phase function are collected in the tables presented in section 7.

For the reader’s convenience we give a brief account of basic elements of the framework
from [12]. The rigorous theoretical analysis is carried out under the asymptotic assumptions

� � 1, α � 1, α/� < 1, (24)

which allow one to distinguish, classify and study a number of nonlinear wave interactions in
photonic crystals including, in particular, second harmonic generation (SHG). The construction
of wavepackets probing the medium together with the consequent analysis of related nonlinear
effects is based on the spectral theory of the underlying linear periodic medium. Proper
wavepackets are produced by the currents J(t) of the form of a slowly modulated carrier wave
(see figure 1)

J(t) = �e−iMtj(τ ) = �e−i M
�

τj(τ ), τ = �t (25)

where j (τ ) = 0 for τ � 0. (26)

This introduces into consideration a new slow time scale τ . Note that the term e−iMtj in (25)
with constant j solves the linear problem ∂tu =−iMu, u(0) = j. This solution can be written
explicitly in terms of the Floquet–Bloch eigenmodes. The slow time τ = �t is a natural scale
for the time evolution of the nonlinear processes under study. Note also that the condition (26)
implies that for negative times everything is at rest and

U(t) = 0, t � 0. (27)

If a current of the form (25), (26) is introduced in the linear medium, it produces a
wavepacket U (0) described by

U (0) = e−iMtV (0)(τ ), V (0)(τ ) = −
∫ τ

0
j(τ1) dτ1, (28)

where, in view of (26), V (0)(τ ) = 0 if τ � 0. To single out the first nonlinear response we
represent U(t) as

U(t) = e−iMtV (τ ), V (τ ) = W (τ ) + V (0)(τ ), (29)

where V (0) is defined by (28). Clearly V (τ ) and W (τ ) vanish for negative times. Then, as it
is shown in [12], the first nonlinear response is given by

U (1)(t) = e−iMtV (1)(τ ), V (1)(τ ) = α

�

∫ τ

0
ei M

�
τ1FNL[e−i M

�
τ1 V (0)(τ1)] dτ1. (30)
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The representation of the first nonlinear response V (1)(τ ) by the oscillatory integral in (30)
plays the central role in the studies of nonlinear wave interactions in photonic crystals.

The studies are carried out for one-, two- and three-dimensional dielectric media with a
quadratic nonlinearity. Most of the analysis below is presented for the more difficult case of
the three-dimensional space.

1.2. Range of applicability

The nonlinear phenomena in photonic crystals which we study have limitations due to the
choices of probing waves. Our probing waves are combinations of a number of almost
monochromatic elementary wavepackets. Every elementary wavepacket has its carrier
frequency which, for instance, can be thought of as belonging to one channel in a multichannel
system.

The limitations on probing elementary wavepackets stem primarily from the condition of
their almost monochromaticity � = �ω

ω0
� 1, and the natural condition that the wavepacket

must reside in the body of the nonlinear photonic crystal for the time of nonlinear interactions.
Note that the inequality � � 1 implies that the wavepacket has the number of cycles
Nwp = �−1 � 1.

The limitations on the intensity of nonlinear interactions stem from the requirement to
have the underlying linear medium as an adequate reference frame for the analysis of nonlinear
interactions.

The mentioned limitations can be formulated in different ways. The nonlinear regimes
under study are best described in terms of the Floquet–Bloch components of the excitation
currents and the waves they generate. The conditions describing these regimes can also be
formulated rather adequately in simpler terms of the amplitudes and space dimensions of the
excitation currents and generated waves. They are as follows.

(i) The spatial range Lwp of the excitation currents as well as generated wavepackets is not
too small compared with the space dimension L0 of the primitive cell. This constraint is
due to the fact that the probing wavepacket is composed essentially of Bloch eigenmodes
from just a few spectral bands. Consequently, due the nature of the Bloch eigenmodes,
the wavepacket spatial dimension cannot be much smaller than L0.

(ii) The space dimension Lphcryst of a sample of the nonlinear photonic crystal (nonlinear
periodic medium) is much larger than the lattice constant, that is the size of the primitive
cell, L0, i.e. Lphcryst � L0.

(iii) The spatial range Lwp of wavepackets is much smaller than Lphcryst, i.e.

Lwp � Lphcryst. (31)

The condition (31) assures that the wavepacket will stay in the body of the photonic crystal
for the time of nonlinear interactions. In fact, for simplicity we study rigorously an ideal
situation of an infinitely large photonic crystal Lphcryst = ∞.

(iv) The excitation currents are almost harmonic and have sufficiently small amplitudes.
We consider the wave time evolution only up to the point where the amplitude of the
first nonlinear response does not exceed the amplitude of the wave linear component.
Consequently, the underlying linear medium, particularly its dispersion relations, provide
a good reference frame for the constructive analysis of the nonlinear regimes under study.

The relation between the inequality Lwp � Lphcryst and limitations of the stationary phase
method based on the smoothness (differentiability) of the Floquet–Bloch transform of the wave
in the quasimomentum k are discussed in section 3.1.



Topical Review R31

To make a rough order of magnitude assessment of the parameters of an elementary (almost
monochromatic) wavepacket with �ω

ω0
= � propagating in the photonic crystal, we assume that

(i) it has reference (carrier) frequency ω0 and the frequency spread �ω;
(ii) its reference wavelength is λ0 = ω0/c with c being the speed of light in the crystal;

(iii) k0 is the reference quasimomentum (wavenumber).

Then in the case when the group velocity ω′
n(k0) does not vanish we get the following

approximate estimations:

�ω ≈ ω′
n(k0)�k, Lwp ≈ 2π

�k
≈ 2πω′

n(k0)

�ω0
= ω′

n(k0)

c
λ0 Nwp, (32)

for which the limitation (31) reduces to

ω′
n(k0)

c
λ0 Nwp � Lphcryst. (33)

Observe that the condition (33) is satisfied for sufficiently small group velocity ω′
n(k0). For

nonlinear interactions related to the SHG with both the fundamental and the second-harmonic
frequencies tuned to photonic band edges [23, 48], the condition (33) can be well satisfied. In
these cases, when the group velocity ω′

n(k0) almost vanishes, assuming that ω′′
n(k0) does not

vanish, we can get a more accurate assessment of the parameters substituting (32) with the
following approximation:

�ω ≈ ω′′
n(k0)

2
�k2, Lwp ≈ 2π

�k
≈

√
πω′′

n(k0)

c
λ0 Nwp, (34)

for which the limitation (31) reduces to√
πω′′

n(k0)

c
λ0 Nwp � Lphcryst. (35)

2. Modal expansions and two time scales

An important step in the studies of nonlinear wave interactions is recasting the evolution
equation in the modal form based on the eigenmodes of the underlying linear medium. In
fact, the choice of eigenmodes as a basis for waves is absolutely necessary in the analysis of
nonlinear phenomena of interest. The special role of the basis of eigenmodes rests on their
unique property not to exchange the energy in the course of linear evolution. Any other choice
for the basis of the linear medium would result in the mode energy exchange obscuring the
nonlinear processes under study [12]. A number of different aspects of nonlinear regimes
were studied based on coupled modes approach, Floquet–Bloch spectral decomposition and
multiple scales [8, 9, 22, 37, 52].

Thus, let us introduce the eigenmodes of the underlying linear medium as described by
the linear Maxwell operator M in (16). For simplicity, we consider the case when the lattice
of periods is cubic with the lattice constant L0. In addition, we switch to the dimensionless
space variable r → rL−1

0 , keeping the same notation r for it. Note then that the spatial period
becomes 1. Since the coefficients of the differential operator M are periodic its basic spectral
properties are covered by Floquet–Bloch theory [11, 54].

Namely, all the eigenvalues and the eigenmodes of M are parametrized by two indices:
the zone (band) number n = 1, 2, . . . , and the quasimomentum k from the so-called Brillouin
zone. In view of (14), the Brillouin zone in our case is the cube [−π, π]3. Note that the operator
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M has a property that if ω is an eigenfrequency then −ω is also an eigenfrequency. By Floquet–
Bloch theory the spectrum of the periodic operator M is described by eigenfrequencies

±ωn(k), n = 1, 2, . . . , k in [−π, π]3. (36)

We assume that the eigenvalues are naturally ordered

0 � ω1(k) � ω2(k) � · · · . (37)

To take into account the negative eigenfrequency we introduce pairs

n̄ = (ζ, n) where ζ = ±1, n = 1, 2, . . . (38)

and set

ωn̄(k) = ζωn(k), for n̄ = (ζ, n). (39)

We remind that the corresponding Bloch eigenmodes G̃n̄(r,k) satisfy the following relations:

MG̃n̄(r,k) = ωn̄(k)G̃n̄(r,k), (40)

G̃n̄(r + m,k) = eik·mG̃n̄(r,k), m in Z
3. (41)

In addition to that (see [12] for details),

G̃n̄(r,k) =
[

D̃n̄(r,k)

B̃n̄(r,k)

]
=

[
iζ [ωn(k)µ]−1∇ × B̃n̄(r,k)

B̃n̄(r,k)

]
, (42)

∇ · B̃n̄(r,k) = 0, ∇ · D̃n̄(r,k) = 0, (43)

and the fields B̃n̄(r,k) are of the Bloch form

B̃n̄(r,k) = e{ik·r}B̂n̄(r,k),

where B̂n̄ is a Z
3-periodic function in r. For every fixed quasimomentum k the eigenfunctions

G̃n̄(r,k) of different n̄ are orthogonal with respect to the following scalar product:

(U1(r),U2(r)) =
∫

[−1,1]3
U ∗

1 (r)

[
η(1)(r) 0

0 1

]
U2(r) dr (44)

where U ∗ stands for a vector conjugate to the complex valued vector U . Namely

(G̃n̄(r,k), G̃n̄′(r,k)) = δn̄,n̄′ (45)

where δn̄,n̄′ is the Kronecker symbol.
Now for any vector field U(r) we introduce its modal expansion

U(r) = 1

(2π)3

∑
n̄

∫
[−π,π ]3

Ũn̄(k)G̃n̄(r,k) dk. (46)

Observe that the general solution to the linear Maxwell equations, α = 0, in the absence of
currents takes the form

U(r, t) =
∑

n̄

∫
[−π,π ]3

Ũn̄(k)Gn̄(r,k)e−iωn̄ (k)t dk (47)

where Ũn̄(k) are the Bloch mode coefficients of U .
To use the excitation current J as a wavepacket generation instrument we assume that it

has the following modal representation:

J(r, t) =
∑

n̄

1

(2π)3

∫
[−π,π ]3

� j̃n(k, τ )Gn̄(r,k)e−iωn̄ (k)t dk, τ = �t, (48)
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where j̃n(k, τ ) is a slow modulation of the time harmonic carrier waves. We also set the
currents to vanish for negative times, i.e.

J(r, t) = 0, j̃n(k,�t) = 0 if t � 0. (49)

Then we recast the fields U(r, t) and the corresponding equations in terms of the fields V (0)(τ )

and V (1)(τ ) introduced in the previous section. In the linear case, α = 0, when J is defined
by (48) and (49), the modal form of the solution V (0) to the Maxwell equations (15) is

Ṽ (0)
n̄ (k, τ ) = −

∫ τ

0
j̃n̄(k, τ1) dτ1. (50)

To describe the modal expansion of the first nonlinear response Ṽ (1)
n̄ (k, τ ) we introduce

triads of eigenmodes (n̄,k), (n̄′,k′) and (n̄′′,k′′) satisfying the phase matching condition

k′′ = k − k′. (51)

Then we introduce the following phase function:

φ�n(k,k′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′), �n = (n̄, n̄′, n̄′′), (52)

playing a decisive role in the nonlinear mode interactions. The Bloch modal form of the first
nonlinear response (30) is

Ṽ (1)

n̄ (k, τ ) = α

�

∑
n̄′,n̄′′

∫ τ

0
I(Ṽ (0)| �n,k, τ1) dτ1, (53)

I(Ṽ (0)| �n,k, τ1) =
∫

[−π,π ]3
eiφ�n(k,k′)τ1/� Q̃ �n[Ṽ (0)| �n,k,k′, τ1] dk′, (54)

Q̃ �n[Ṽ (0)| �n,k,k′, τ1] = Q̆ �n Ṽ (0)

n̄′ (k′, τ1)Ṽ (0)

n̄′′ (k − k′, τ1), (55)

where Q̆ �n is a coefficient depending on k and k′ (see [12] for detail).
Let us now look at formulae (53), (54) accounting for the nonlinear mode interactions. The

time derivative dṼ (1)
n̄ (k, τ )/dτ is proportional to the sum of the quantities I(Ṽ (0)| �n,k,τ1) each

of which can be naturally interpreted as an interactive contribution of the (n̄′,k′) and (n̄′′,k−k′)
components of the linear wave Ṽ (0) to the (n̄,k) component of the first nonlinear response Ṽ (1)

n̄ .
For this reason we refer to the integrals I(Ṽ (0)| �n,k,τ1) in (54) as the oscillatory interaction
integrals.

3. Selection rules for stronger nonlinear interactions

To take advantage of the representation (53), (54) for the analytical studies of the nonlinear
phenomena, we consider the asymptotic behaviour of the interaction integrals I for � � 1.
In other worlds, we consider the first nonlinear response of the medium to almost harmonic
fields of infinitesimally small amplitudes.

Note that the interaction integralI defined by (54) has a factor eiφ�n(k,k′) τ1
� rapidly oscillating

as � → 0. It is this factor that ultimately, determines which modes in the right-hand side of (53)
produce substantial contributions toṼ (1)

n̄ . Let us look now at the selection rules allowing us
to single out stronger interacting modes.

It follows from (53), (54) that the modes for which the phase

φ�n(k,k′,k′′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′) (56)

vanishes would give larger contributions to Ṽ (1)

n̄ than those for which it does not. This yields
the first selection rule known as the FMC or sum-frequency mixing condition [16, 17, 47],

ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′) = 0. (57)
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We can further narrow down the set of stronger interacting modes by applying the
stationary phase method [7, 26, 28, 29, 32, 51], to the integral (54). According to the method,
the asymptotic approximation to the oscillatory integral (54) as � → 0 is determined by
infinitesimally small vicinities of the critical points k′∗ satisfying the following equation:

∇k′φ�n(k,k′
∗) = 0. (58)

For the phase function φ defined by (56) equation (58) reduces to

∇ωn̄′(k′
∗) = ∇ωn̄′′(k − k′

∗). (59)

Since ∇ω(k) is the group velocity, the selection rule (59) is naturally interpreted as the GVC,
and can be viewed as a selection rule for modes of stronger interaction. We show in section 5
that the group velocity vgr(V

(1)
n̄,k ) of the first nonlinear response matches exactly the group

velocities in (59) [12], i.e.

vgr(V
(1)

n̄,k ) = ∇ωn̄′(k′
∗) = ∇ωn̄′′(k − k′

∗). (60)

Note that the group velocity (60) of the first nonlinear response Ṽ (1)
n̄ (k, τ ) related to the (n̄,k)-

mode differs from the group velocity ∇ωn̄(k) of same mode as a linear wave!
As to the known phase matching condition k = k′ +k′′, see (51), observe that it is already

explicitly taken into account when we introduced the interaction integrals I(Ṽ (0)| �n,k,τ1)

by (54), (see [12] for details).
For a given (n̄,k) let us denote the values of the vector k′ and indices n̄′, n̄′′ satisfying the

matching conditions (57) and (59) by respectively k′
∗l and n̄′

l , n̄′′
l , where the index l numerates

points satisfying the selection rules. The interaction integrals I(Ṽ (0)| �n,k,τ1) in (53) as
� → 0 are essentially determined by infinitesimally small vicinities of the points k′

∗l , and
their contributions to Ṽ (1)

n̄ (k, τ ) are of the form, [12],
α

�
Bl(k, τ )�q(k,k′

∗l )(1 + o�(1)) where q(k,k′
∗l) > 0, (61)

and

Bl(k, τ ) =
∫ τ

0
Q̄ �nl [Ṽ

(0)| k,k′
∗l, τ1] dτ1, �nl = (n̄, n̄′

l , n̄′′
l ).

The interaction index q(k,k′
∗l) in formula (61) determines the relative strength of the

impact of the modes (n̄′
l ,k′

∗l) and (n̄′′
l ,k′′

∗l), with k′′
∗l = k − k′

∗l , on the mode (n̄,k) as a
result of the nonlinear interaction. As a consequence, we also get from (53) the following
asymptotic formula:

Ṽ (1)
n̄ (k, τ ) = α

�

∑
l

Bl(k, τ )�q(k,k′∗l )(1 + o�(1)), � → 0. (62)

Formula (62) can be simplified if we introduce the leading interaction index

q0(k) = min
l

q(k,k′
∗l), (63)

and the set Lk of all l for which the minimum is attained, i.e.

Lk = {l : q(k,k′
∗l) = q0(k)}. (64)

Denoting

B(k, τ ) =
∑
l∈Lk

Bl(k, τ ) (65)

we get from (62) the following asymptotic representation of the first nonlinear response:

Ṽ (1)
n̄ (k, τ ) = α

�
B(k, τ )�q0(k)(1 + o�(1)), � → 0. (66)
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We would like to remark that the GVC stemming from stationary phase condition (58)
is, in fact, the most important selection rule. Indeed, it follows from the stationary phase
method that if (58) does not hold, then the corresponding oscillatory integral will decay faster
than any positive power �N as � → 0. In other words, the failure to comply with the group
velocity condition sets the interaction index q0 to be infinite, indicating the weakest nonlinear
interaction. In contrast, if the FMC (57) does not hold, that would lift the interaction index q0

by 1 (see section 7 and table 2). In the case of an ideal dispersionless homogeneous medium
the GVC is obscured since it coincides exactly with the phase matching condition (51) for
ωn̄(k) = constant |k|.

The significance of the GVC for nonlinear interactions have been pointed out in a number
of papers [19, 35, 43, 55, 57]. In [12] and in this paper we show that the GVC is an
asymptotically exact selection rule following consistently from the stationary phase principle
for nonlinear regimes satisfying the constraints imposed in the introduction and also discussed
in the following section.

It is also worthy of note that the interaction index q0 senses roughly how many modes
are involved in the nonlinear interaction. In other words, the interaction index q0 can be
smaller, indicating stronger interaction, when the density of interacting modes approaches
infinity at a higher rate. The nonlinear interaction enhancement for the second and third
harmonic generation due to to larger density of modes in a known phenomenon, see, for
instance [18, 23] and references therein.

3.1. Limitations related to the stationary phase method

When applying the stationary phase method in the analysis of interaction integrals in (53), (54)
we assume the smoothness, i.e. the differentiability, of the amplitude Q̃ �n[Ṽ (0)| k,k′, τ1] as a
function of the quasimomentum k′. In view of (50), the condition ultimately reduces to the
smoothness in k of the Floquet–Bloch transform j̃n̄(k, τ1) of the excitation currents. This
is a physically significant assumption affecting the spatial range of the wave in the form of
constraint (31). To expose this relation we give the following general definition of the spatial
range of a wave.

First, we introduce a normalized wavefunction Φ(r), i.e.
∫ |Φ(r)|2 dr = 1 (for instance,

the wavefunction corresponding to the excitation currents). Then we introduce for an observ-
able physical quantity ξ (a linear self-adjoint operator), its average (expected value) and the
mean-square deviation in the state Φ respectively, using (see, for instance [46], sections 7, 12)

〈ξ〉Φ =
∫

Φ∗(r)ξΦ(r) dr, (∆ξΦ)2 = 〈(ξ − 〈ξ〉Φ)2〉Φ. (67)

In particular, let r = (r1, . . . , rd) be the position operator; [r] is its integer-valued part. In
other words, [r] determines in which cell the point r resides. Then we have

([∆[r ] j ]Φ)2 = 〈([r ] j − 〈[r ] j 〉Φ)2〉Φ, j = 1, 2, 3. (68)

Note that 〈[r ] j〉Φ are the integer-valued coordinates of the wave centre. We define now the
spatial range LΦ of the wave Φ(r) by the formula

L2
Φ =

3∑
j=1

〈([r ] j − 〈[r ] j 〉Φ)2〉Φ. (69)

Denoting Φ̃ = {Φ̃n̄(k)} the Floquet–Bloch transform (46) ofΦ(r) and using its basic properties
(see [12], section 5.1) we get
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〈[r ] j〉Φ =
∫

Rd

Φ∗(r)[r ] jΦ(r) dr = 1

(2π)d

∑
n̄

∫
[−π,π ]3

Φ̃∗
n̄(k)∂k j Φ̃n̄(k) dk = 〈∂k j 〉Φ̃, (70)

and

〈([r ] j − 〈[r ] j〉Φ)2〉Φ = 1

(2π)d
〈(∂k j − 〈∂k j 〉Φ̃)2〉Φ̃. (71)

Now summing up the expressions in (71) over j and using (67)–(69) we obtain the following
identity

L2
Φ = 1

(2π)d

∑
n̄

∫
[−π,π ]3

(∇kΦ̃∗
n̄(k) − 〈∇k〉Φ̃)2 dk (72)

directly relating the mean-square average of the derivative Φ̃ in k to the spatial range of the
wave.

Therefore, based on (72) we can conclude that the assumption of the smoothness of Φ̃
in k is, in fact, directly related to the spatial range LΦ = Lwp of the wave Φ. Since we
consider infinite photonic crystals, i.e. Lphcryst = ∞, the requirement of smoothness of Φ̃ in k

reduces to LΦ = Lwp < ∞. In the case of a finite Lphcryst the appropriate condition would be
Lwp � Lphcryst as in (31).

When the stationary phase method is applicable it yields (see (58) and (59)) the group
velocity matching as a selection rule. We have shown in [12] and in the following sections
that in the important case of the SHG the group velocity matching is satisfied for appropriate
triads of modes. In a number of situations, when the group velocity matching does not hold
automatically, such as in the process of parametric soliton generation, its significance is well
known in physical literature (see [19, 35, 43, 55, 57]). In particular, the results of [19] show
that a group-velocity mismatch prevents spatial soliton formation.

In situations when the constraints described in the introduction, in particular, (31), are
not satisfied, our conclusions on the relative significance of different selection rules might not
hold. For instance, in [48] the periodic structure is many times smaller than the pulse spatial
range, that is Lwp � Lphcryst . Consequently, the features of nonlinear regimes are substantially
different.

4. Analytic properties of the dispersion relations and the phases

To study and classify the nonlinear interactions, we have to first investigate the analytic
properties of the dispersion relations ωn(k) and, consequently, the phases φ�n(k,k′) defined
by (52), since they play a significant role in the analysis of the interaction integrals
I(Ṽ (0)| �n,k, τ1) in (54). Consequently this section is devoted to the consideration of
mathematical concepts needed for the analysis of the interaction integrals related to the first
nonlinear response.

It is shown in section 3 that the modes described by k and k′∗ will have a stronger nonlinear
interaction only if they satisfy the stationary phase (group velocity matching) condition

∇k′φ�n(k,k′
∗) = −∇ωn̄′(k′

∗) + ∇ωn̄′′(k − k′
∗) = 0. (73)

The points k′∗ satisfying (73) are called critical. In the case when the phase φ�n(k,k′) is
differentiable at k′∗ we shall call a point k′∗ satisfying (73) a simple critical point.

In the case when both k′∗ and k′′∗ = k − k′∗ are such that the respective multiplicities of the
eigenvalues ωn̄′(k′∗) and ωn̄′′(k − k′∗) are exactly one, then the phase φ�n(k,k′) is differentiable
at k′ = k′∗. Consequently, gradients of the eigenfrequencies are well defined,and equation (73)
has a straightforward interpretation as the GVC.
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If k′∗ is the simple critical point satisfying (73) then, according to the classical theory
of oscillatory integrals, the order of asymptotic approximation of the interaction integral
I(Ṽ (0)| �n,k, τ1), defined by (54), depends on whether the Hessian {∇2

k′φ�n(k,k′∗)} of the phase
is non-degenerate, i.e. if the matrix {∇2

k′φ�n(k,k′∗)} has the maximal rank which is d , where
d is the space dimension. Evidently, the non-degenerate case can be also identified by the
condition

det{∇2
k′φ�n(k,k′

∗)} �= 0. (74)

If (74) holds we call k′∗ a non-degenerate critical point. The contribution of non-degenerate
critical points to the oscillatory integrals is given by the well known classical asymptotic
formula [51] (section VIII, 2.3.2), [7] (theorem 6.2) [28, 29]).

If the rank of the Hessian {∇2
k′φ�n(k,k′)} is smaller than d and, consequently

det{∇2
k′φ�n(k,k′

∗)} = 0,

we call the point k′∗ a degenerate critical point. A general qualitative result describing the
asymptotics of oscillatory integrals in Rd for degenerate critical points is presented in [7]
(theorem 6.3), [51] (section VIII, 5.5).

If the phase is not differentiable, the asymptotic analysis is more complicated. It
must be noted that the issue of differentiability of the functions ωn(k) is far from trivial,
[39] (sections II.5, II.7), especially for the space dimensions d = 2, 3. The problem of
non-differentiability is caused by multiple eigenvalues. The multiplicity of eigenvalues of
differential operators and their dependence on parameters are the subjects of extensive studies
(see, for instance [38, 39, 56, 59] and [5] (appendix 10, p 425), for detailed discussions of the
dependence of eigenvalues on parameters).

In the one-dimensional case d = 1 generically there is no problem with differentiability.
Thus, it remains to study the cases d = 2, 3. Fortunately, in our problems it is sufficient to
consider only the multiplicity 2 [12].

4.1. Band-crossing points for the space dimension d = 2

We call a point k⊗ = (k⊗1, k⊗2) a band crossing point (BC point) if there exists n such that
ωn(k⊗) = ωn+1(k⊗). In the two-dimensional case d = 2 in a generic situation there is a finite
number of BC points k⊗. Analysis shows that the sum ωn(k) + ωn+1(k) is always analytic in
the vicinity of k⊗ whereas the difference ωn(k) − ωn+1(k) is non-differentiable at k⊗. The
typical behaviour of the functions ωn(k⊗) and ωn+1(k⊗) in the vicinity of a BC point k⊗ is
depicted in figure 2.

It turns out that after a proper local change of variables k in a vicinity of k⊗ the functions
ωn(k) and ωn+1(k) become analytic in new variables. These new variables can be defined as
a composition of a linear map and generalized polar variables r, θ , namely

k1 = k⊗1 + a1r cos(θ − θ0), k2 = k⊗2 + a2r sin θ, (75)

where constants a1, a2 and θ0 �= ±π/2 depend on k⊗. The functions ωn(k) and ωn+1(k) are
analytic functions of r and θ (see [12] for more details).

Let now ϕ(k) stand for either of functions ωn(k), ωn+1(k) or for the phase φ�n(k,k′). A
thorough analysis based on the results in [12] (section 5.4), show that for properly chosen a1,
a2 and θ0 the following representation holds in a vicinity of a BC point k⊗

ϕ(k) = ϕ(k⊗) + ψ(k) + r

[
cos(θ0) +

∞∑
j=1

b j(θ)r j

]
, r � 1, (76)



R38 Topical Review

k1
k2

ω

Figure 2. In the two-dimensional case d = 2 two branches of eigenvalues at a BC point typically
form a conical surface as it is shown in the figure. Remarkably, the intersection is a point, and not a
curve! Another remarkable phenomenon is that the conical intersection for two eigenvalue surfaces
is robust and it continues to hold under small self-adjoint perturbations of the related operators.

where ψ(k) is an analytic in k function, and b j(θ) are smooth 2π-periodic functions of θ . It
can also be shown that there exists a smooth local change of variables

r, θ → r̃ , θ̃ (77)

such that yields the following canonical representation for the phase:

ϕ(k) = ϕ(k⊗) + ψ(r̃ cos θ̃ , r̃ sin θ̃ ) + r̃ (78)

where ψ is analytic. This exact phase representation plays the key role in the rigorous analysis
of the asymptotic approximation of the oscillatory integral

Iδ(k⊗) =
∫

|k−k⊗|�δ

eiϕ(k)τ/� A(k) dk =
∫ δ

0
r dr

∫ 2π

0
eiϕ(r,θ)τ/� A(r, θ) dθ. (79)

The gradient ∇kϕ(k) is not continuous at the BC point k⊗. The typical behaviour of ∇kϕ(k)

near k⊗ is similar to (k − k⊗)/|k − k⊗|, that can be looked at as a situation when the gradient
takes on infinitely many values. Let us show that the generalized polar coordinates (75) allow
one to give meaning to the multiple-valued gradient ∇kϕ(k) at a BC point k⊗. Indeed, note
that ∇kϕ takes the following form in oblique polar coordinates (75):

∇kϕ = ∇kψ(k) + ([∇k(ϕ − ψ)]1, [∇k(ϕ − ψ)]2) (80)

[∇k(ϕ − ψ)]1 = cos θr∂r (ϕ − ψ) − sin θ∂θ (ϕ − ψ)

a1r cos θ0
(81)

[∇k(ϕ − ψ)]2 = r sin(θ − θ0)∂r (ϕ − ψ) + cos(θ − θ0)∂θ (ϕ − ψ)

a2r cos θ0
(82)

and, hence,

[∇kϕ(k⊗)] = lim
r→0

∇kϕ(k⊗) = [[∇kϕ(k⊗)]1, [∇kϕ(k⊗)]2] (83)

[∇kϕ(k⊗)]1 = [ψ(k⊗)]1 +
cos θ∂r (ϕ − ψ) − sin θ∂θ∂r (ϕ − ψ)

a1 cos θ0

∣∣∣∣
r=0

(84)
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Figure 3. The figure shows all the values of the gradient of a phase ϕ at a BC point k⊗. The
typical elliptic curve is spanned by the tip of the gradient ∇kϕ(k⊗) as θ runs from 0 to 2π . The
arrows indicate the gradient for several values of θ . In this particular case the gradient has all the
directions between 0 and 2π with every direction occurring exactly once.

[∇kϕ(k⊗)]2 = [ψ(k⊗)]2 +
sin(θ − θ0)∂rϕ + cos(θ − θ0)∂θ∂rϕ

a2 cos θ0

∣∣∣∣
r=0

. (85)

In particular, for ϕ(k) defined by (75), (76) we get

∇kϕ(k⊗) = ∇kϕ(k⊗, θ) = ∇kψ(k⊗) +

[
cos θ

a1
,

sin(θ − θ0)

a2

]
, 0 � θ � 2π. (86)

Observe, that the formula (86) indicates that the gradient at a BC point k⊗ is the sum of the
two terms: the first one is a regular analytic ∇kψ(k⊗), whereas the second one has multiple
values as the angle θ varies.

Formula (83) holds for functions ϕ which are not differentiable in Cartesian coordinates
but are twice differentiable in the polar coordinates, as our dispersion relations and phases are
at BC points. Observe also that ∇kϕ(k⊗) defined by (83), (86) becomes a function of the angle
θ which naturally reflects the phenomenon of multiple values of the gradient at a BC point.

A rather laborious analysis of the integrals (79) shows that the dominant contribution to
the integrals for � → 0 is proportional to �

5
4 . Note that the similar integral with k being a

simple non-degenerate critical point would be asymptotically proportional to �, which is the
value of �

d
2 for d = 2.

In the two-dimensional case d = 2 generically there will be at most a finite number of
BC points. For every such point there exists its vicinity in which the eigenvalues and the
eigenvectors are analytic functions in the polar coordinates.

Figures 3–5 show several typical examples of the multiple valued gradient at a BC point.

4.2. Band-crossing points for the space dimension d = 3

In the case d = 3 the BC points k⊗ related to ωn(k) form smooth band-crossing curves [12].
Let us consider one of those curves �⊗ and pick a point k⊗ in �⊗. Let ξ(k⊗) and Ξ(k⊗) be
respectively the tangent vector to the curve �⊗ at the point k⊗ and the plane passing through
k⊗ and perpendicular to ξ(k⊗). It turns out that in a generic case the function ωn(k) is
differentiable in the direction ξ(k⊗) and, hence, the tangential derivative ∇ωn(k⊗) · ξ(k⊗)

is well defined. As to the behaviour of ωn(k) in the plane Ξ(k⊗) it is similar to the case of
BC points for the space dimension d = 2. In other words, the function ωn(k) is an analytic
function in an appropriately chosen curvilinear cylindrical coordinate system. The typical
behaviour of the multiple valued gradient at a BC point is shown in figure 6.

Let us consider now the BC points k⊗ related to the phase φ�n(k,k′) and belonging to one
of the band-crossing curves �⊗. The most significant contributions to the interaction integral
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Figure 4. Here we give another example of the gradient at a BC point k⊗ . The elliptic curve
is spanned by the tip of the gradient ∇kϕ(k⊗) as θ runs from 0 to 2π , with arrows indicating its
values. The shadowed area indicates a sector of allowed directions for the gradient with every
direction, except for the extreme, occurring twice as θ runs from 0 to 2π .

Figure 5. This is an example of the gradient at BC point k⊗ which takes on 0. The elliptic curve
is spanned by the tip of the gradient ∇kϕ(k⊗) as θ runs from 0 to 2π . The arrows indicate several
values of the gradient. Every direction, except for one, occurs exactly once.

come from points on �⊗ at which the tangential derivative of φ�n(k,k′⊗) vanishes, i.e.

∇φ�n(k,k′
⊗) · ξ(k,k′

⊗) = 0. (87)

In the three-dimensional case d = 3 generically there will be at most a finite number
of band-crossing curves. The stationary phase (group velocity matching) condition (87) will
generally select a finite number of modes with the strongest nonlinear interaction.

5. The group velocity and nonlinear interactions

As we have already pointed out the group velocity condition is the most important, and, in fact,
a necessary condition for stronger nonlinear interaction for the regimes under study. If the
condition does not hold, the relevant interaction integral has infinite index and, hence, decays
faster than any positive power of � as � → 0. In this section we study in detail the issues
related to the GVC.

5.1. The group velocity of the first nonlinear response

To find the group velocity of the first nonlinear response Ṽ (1)
n̄ (k, τ ), considering it as a wave on

its own, we recall, first, the derivation of the representation of the group velocity in a periodic
medium. The group velocity can be found in the case of homogeneous media by the stationary
phase method [61] (section 11.4), [32] (section 1.6a). The same approach can also be used for
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Figure 6. This is an example of the gradient at a BC point k⊗ (shown as the origin) for three-
dimensional space. The solid thinner curve is a curve �⊗ of BC points including k⊗. The elliptic
curve is spanned by the tip of the gradient ∇kϕ(k⊗) as θ runs from 0 to 2π . The thinner arrows
indicate several values of the multiple-valued gradient. The bolder arrow, at a tangent to the curve
of BC points �⊗, describes the tangential component of the gradient parallel to ξ(k⊗). The phase
is always differentiable in the direction ξ(k⊗). The most significant contributions to the interaction
integral according to stationary phase method come from points k⊗ in �⊗ at which the tangential
derivative of the phase vanishes.

periodic media (see [11, 62] (section 6.7)) yielding the well known expression for the group
velocity of a wavepacket based on the eigenmode (n̄,k):

vgr(n̄,k) = ∇ωn̄(k). (88)

The derivation of (88) is instructive and is given as follows. A wavepacket Un̄,k(r, t) based
on the Bloch eigenmode Gn̄(r,k) in d-dimensional periodic medium can be written as

Un̄,k(r, t) = 1

(2π)d

∫
|k̃−k|�δ

Ũn̄(k̃)Gn̄(r, k̃)e−iωn̄(k̃)t dk̃ (89)

where δ is an appropriately small number. Using the property (41) of the Bloch mode Gn̄(r,k)

we get

Un̄,k(r + m, t) = 1

(2π)d

∫
|k̃−k|�δ

Ũn̄(k̃)Gn̄(r, k̃)ei[(m·k̃)−ωn(k̃)t] dk̃ (90)

for any integer valued m. Being interested in the wavepacket evolution for large times t and
large distances proportional to t , we neglect the fact that m is integer valued and rewrite (90)
substituting r = 0 and m = r′ as follows:

Un̄,k(r
′, t) ∼= 1

(2π)d

∫
|k̃−k|�δ

Ũn̄(k̃)Gn̄(0, k̃)ei[(r′ ·k̃)−ωn(k̃)t] dk̃. (91)
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Applying the standard stationary phase method to the integral in (91) we find that the amplitude
of the wavepacket Un̄,k(r

′, t) is not very small only if

∇k[(r′ · k) − ωn(k)t] = 0 (92)

or, equivalently,

r′ = ∇kωn(k)t . (93)

For a typical mode (n̄,k) and t = τ/� the amplitude Un̄,k(r
′, t) is proportional to �

d
2 as

� → 0, and the wavepacket is spatially localized about the point ∇kωn(k)t , indicating that the
group velocity vgr(n̄,k) is ∇kωn(k) as stated in (88). We would like to remark that here the
group velocity describes the wavepacket motion over distances substantially larger than the
size of the periodic cell.

Turning now to the first nonlinear response, we deduce from (29), (53), (54) that for � → 0

V
(1)

n̄,k (r, t) ∼= 1

(2π)d

∫
|k̃−k|�δ

Ṽ (1)

n̄ (k̃, τ )Gn̄(r, k̃)ei[φ�n(k̃,k′)−ωn(k̃)]τ/� dk̃. (94)

Taking into account (52) we recast (94) as follows:

V
(1)

n̄,k (r, t) ∼= 1

(2π)d

∫
|k̃−k|�δ

Ṽ (1)
n̄ (k̃, τ )Gn̄(r, k̃)e−i[ωn̄′ (k′)+ωn̄′′ (k̃−k′)]τ/� dk̃. (95)

Applying now the argument used for the wavepacket Un̄,k(r, t) we derive from (95) the
following representation for the group velocity of the first nonlinear response:

vgr(V
(1)

n̄,k ) = ∇kωn̄′′(k − k′). (96)

In particular, if the GVC (59) is satisfied, then the group velocity of the first nonlinear response,
as a wave on its own, matches both group velocities of the interacting modes justifying the
equality (60). Observe also that the group velocity ∇kωn̄′′(k−k′) of the first nonlinear response
related to the (n̄,k)-mode evidently differs from the group velocity ∇ωn̄(k) of the (n̄,k)-mode
as a linear wave.

5.2. The group velocity at band-crossing points

In this section we show that the group velocity condition still holds at BC points if the group
velocity being the gradient of the phase is interpreted as a multivalued quantity as described
in sections 4.1, 4.2.

Let us evaluate the nonlinear interaction integrals at BC points. We carry out the evaluation
of the interaction integrals for the space dimension d = 2. The three-dimensional case
d = 3 is reduced to d = 2 as it is explained in section 4.2. For simplicity we consider
only non-degenerate BC points k′⊗. To find the asymptotic approximation to the interaction
integral Iδ(k⊗) defined by (79) we use the relations (76)–(86). The asymptotic analysis can
be ultimately reduced to the analysis of an integral of the following form:

I (�) =
∫ 2π

0
dθ

∫ δ

0
eiϕ(r,θ)τ/� Q(r, θ)r dr, 0 � θ � 2π, (97)

where

ϕ(k) = ϕ(r, θ) = ϕ(k⊗) + v1(k1 − k⊗1) + v2(k2 − k⊗2) + r cos(θ0) + O(r2), (98)

v1 = ∂k1ψ(k⊗), v2 = ∂k2ψ(k⊗) (99)

or, in view of (75),

ϕ(r, θ) = ϕ(k⊗) + r [v1a1 cos(θ − θ0) + v2a2 sin θ + cos(θ0)] + O(r2). (100)
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Figure 7. This figure illustrates the GVC held at a BC point k′⊗ of the phase φ�n(k, k′) attributed to
ωn̄′ (k′). The arrow indicates the group velocity ∇ωn̄′′ (k − k′⊗), and the elliptic curve is the set of
all the values of the group velocity at the BC point k′⊗ of ωn̄′ (k′). The GVC is signified by the tip
of the arrow being exactly in the curve, indicating matching of the group velocity ∇ωn̄′′ (k − k′⊗)

with one of the values of the group velocity ∇ωn̄′(k′⊗).

The asymptotic analysis of the integral I (�) from (97), based on the stationary phase method,
shows that I (�) ∼ �q0 for � → 0, where the positive index q0 attains its smallest value if there
exists θ such that

∂rϕ(0, θ) = 0, ∂θ ∂rϕ(0, θ) = 0. (101)

Note, that for the phase defined by (100) the conditions (101) determining the points of the
dominant contribution to the integral I (�) differ from standard stationary phase conditions

∂rϕ = 0, ∂θϕ = 0. (102)

Substituting (100) into (101) we get

v1a1 cos(θ − θ0) + v2a2 sin(θ) + cos(θ0) = 0 (103)

−v1a1 sin(θ − θ0) + v2a2 cos(θ) = 0. (104)

Solving (103) for v1 and v2 we find that (103) is equivalent to

v1 = −cos(θ)

a1
, v2 = − sin(θ − θ0)

a2
. (105)

Observe now that in view of (99) and (86) the equations (105), in turn, are equivalent to

∇kϕ(k⊗, θ) = 0. (106)

In the case when (105) and, hence, (106) are satisfied we have

I (�) ∼ �5/4, � → 0, (107)

whereas if (106) does not hold then

I (�) ∼ �2, � → 0. (108)

Consider now our phase

φ�n(k,k′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′) (109)

when either k′ = k′⊗ is a BC point for ωn̄′(k′) or k −k′⊗ is a BC point for ωn̄′′(k −k′). Conse-
quently, k′⊗ is a BC point for the phase φ�n(k,k′) as a function of k′. The condition (106) for the
phase φ�n(k,k′) then turns into the GVC. Namely, it has the same form as in (58) and (59), i.e.

∇ωn̄′(k′
⊗) = ∇ωn̄′′(k − k′

⊗) (110)

with the multiple valued gradient interpreted as in sections 4.1, 4.2. Figure 7 illustrates the
GVC for d = 2.
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6. The second-harmonic generation

The SHG in photonic crystals has been the subject of both theoretical and experimental
studies [23, 41, 48, 49, 58]. In particular, SHG has been achieved experimentally:

(i) at the edges of photonic bands of one-dimensional semiconductor photonic crystals [23];
(ii) in a three-dimensional photonic crystal structure [41];

(iii) in one-dimensional periodic photonic crystal with a defect [58];
(iv) in a double resonator semiconductor microcavity [49].

Numerical studies carried out in [48] suggest a significant enhancement of SHG near photonic
band edges. The enhancement stems from the low group velocity near band edges. Low or
even zero group velocity can also occur in nonreciprocal magnetic photonic crystals in the
frozen mode regime [31], that may be an alternative to the band-edge mechanism.

The SHG can be considered as a mode interaction process within our approach subject to
the limitations described in sections 1.2 and 3.1. This can be performed as follows. Consider
the nonlinear interaction between a mode (n̄′,k′) with itself and its impact on a mode (n̄,k).
We can look at that as there are two modes (n̄′,k′) and (n̄′′,k′′) such that

n̄′ = n̄′′, k′ = k′′ mod(2π). (111)

Hence, in view of the phase matching condition k′′ = k − k′, we must set

k′ = k′′ = k/2 mod(2π). (112)

The above implies that the mode (n̄′,k/2) interacting with itself impacts the mode (n̄,k).
Observe now that, in view of (111) and (112), the mode (n̄′,k/2) self-interaction always
satisfies the GVC (59) indicating a stronger nonlinear interaction. As to the FMC (57), it
requires

ωn̄(k) = 2ωn̄′(k/2). (113)

In other words, if there exists k satisfying (113), then there will be a strong nonlinear self-
interaction of the mode (n̄′,k/2) with an impact on the mode (n̄,k) of the exactly two times
higher frequency.

The nonlinear interaction indices related to the SHG are listed in tables 3–8. They indicate,
in particular, that the SHG is one of the strongest nonlinear interactions, and often just the
strongest. The reason for this is the invariance of the phase with respect to the transformation
k′ ↔ k − k′. Evidently k′ = k/2 is the fixed point of the transformation.

As already pointed out in section 1.2, the SHG when both the fundamental and the second-
harmonic frequencies tuned to photonic band edges [23, 48], can be within the limits of the
above approach.

7. Classification of nonlinear interactions

The nonlinear interactions can be studied and classified based on the first nonlinear response
Ṽ (1)

n̄ (k, τ ) to different wavepackets as they become almost monochromatic, i.e. � → 0. The
classification is based on interaction indices and proceeds as follows.

To evaluate the impact of a pair of modes (n̄′,k′) and (n̄′′,k′′), with k′′ = k − k′, on the
mode (n̄,k) we apply the standard stationary phase approach. Namely, we use the excitation
current J(r, t) in the form of a wavepacket composed of modes from a small vicinity of the
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chosen modes (n̄′,k′) and (n̄′′,k′′). This excitation current, in view of (48) and (50), can be
written as follows:

J(r, t) = �

(2π)3

∫
Bδ(k′,k′′)

j̃n(m, τ )Gn̄(r,m)e−iωn̄ (m)τ/� dm, (114)

Bδ(k
′,k′′) = {|m − k′| � δ} ∪ {|m − k′′| � δ} (115)

j̃n(m, τ ) = 0 if m is not in Bδ(k
′,k′′) (116)

with a fixed small δ. The corresponding linear response is

Ṽ (0)
n̄ (k, τ ) = −

∫ τ

0
j̃n̄(k, τ1) dτ1; Ṽ (0)

n̄ (k, τ ) = 0 if k is not in Bδ(k
′,k′′). (117)

We also assume j̃n(k, τ ), and consequently Ṽ (0)

n̄ (k, τ ), to be smooth functions of k.
Now, keeping in mind (53) and (54), we introduce in the consideration the following

interaction integral:

Iδ(�n,k,k′, τ ) =
∫ τ

0
dτ1

∫
Bδ(k′,k′′)

eiφ�n(k,m)τ1/� Q̃ �n[Ṽ (0)| k,m, τ1] dm (118)

resulting in the first nonlinear response

Ṽ (1)
n̄ (k, τ ) = α

�
Iδ(�n,k,k′, τ ). (119)

Thus, the interaction integral Iδ(�n,k,k′, τ ) defined by (118) accounts for the nonlinear impact
of the modes (n̄′,k′) and (n̄′′,k′′), with k′′ = k − k′, on the mode (n̄,k). It plays a key role
in the analysis and classification of nonlinear interactions in periodic dielectric media. As to
the asymptotic approximation of Iδ(�n,k,k′, τ ) as � → 0, it is based, in particular, on the
stationary phase method [7, 26, 28, 29, 32, 51], applied to the phase φ�n(k,m) as a function of
m in an infinitesimally small vicinity of k′. Ultimately, it is reduced to the study of two cases:

(i) noncritical points for which the integral decays faster than any power �;
(ii) critical points: simple and band-crossing ones.

The simple critical points k′∗ are defined as points for which the gradient of the phase
∇mφ�n(k,k′∗), being well defined, vanishes. For the phase (52) this condition is reduced to
the GVC, (58), (59), where k′∗ is such that both eigenfrequencies ωn̄′(k′∗) and ωn̄′′(k − k′∗) are
simple, i.e. of the multiplicity one, and, consequently, the phase φ�n(k,m) is smooth in m at
m = k′∗.

The second type of critical points are BC points where either ωn̄′(k′) or ωn̄′′(k −k′) is not
differentiable. Such points k′⊗ arise when ωn̄′(k′⊗) is the eigenfrequency of the multiplicity 2
or higher, that that the case when a two or bands have a common point. A generic BC point is
of multiplicity 2. The BC points satisfy the GVC for multiple valued gradients as described in
sections 4.1, 4.2 (see formula (86)). We will refer to those points as satisfying the GVC(BC)
condition. Therefore, every critical point must satisfy either the GVC or GVC(BC) conditions.

We classify nonlinear interactions based on their strength measured by the asymptotic
behaviour as � → 0 of the related interaction integrals. It follows from the stationary
phase method that if the group velocity condition (simple or generalized for BC points) is not
satisfied, then the interaction integral Iδ(�n,k,k′, τ ) decays faster than any positive power of �

as � → 0 [12]. In contrast, if the group velocity condition is satisfied (simple or generalized for
BC points), the interaction integral Iδ(�n,k,k′, τ ) will be of order �q0 where 1/2 � q0 � 5/2
(see table 2).

As explained previously the GVC (simple or generalized for BC points) must be satisfied
for stronger nonlinear interactions. For this reason, from now on all strong interactions
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Table 1. Abbreviations for the classes of nonlinear interactions. GV stands for the group velocity,
and BC stands for band crossing. Every table entry indicates that the conditions in the corresponding
row and the column are satisfied. The entry itself is an abbreviation used to refer to the related
properties.

Simple GVC holds GVC(BC) holds

FMC holds:
cumulative response CGV CBC
FMC does not hold:
instantaneous response IGV IBC

Table 2. Interaction indices of the critical points for the quadratic nonlinearity. The fractions in
the entries indicate the permitted values of the index q0. Since the interaction integral is of the
order ρq0 as ρ → 0 the smaller values of q0 correspond to stronger nonlinear interactions. The
largest values of q0 correspond to nondegenerate simple critical points with qT = d/2. Higher
degeneracy yields smaller q0 and, hence, stronger nonlinear interactions.

Cumulative CGV Instantaneous IGV Cumulative CBC
q0 q0 = qT q0 = qT + 1 q0 = qT ⊗

d = 1 1
2

5
4 ; 4

3 ; 3
2 None

d = 2 3
4 ; 5

6 ; 1 5
3 ; 7

4 ; 11
6 ; 2 5

4 ; 2

d = 3 7
6 ; 5

4 ; 4
3 ; 3

2 2; 17
8 ; 13

6 ; 11
5 ; 9

4 ; 7
3 ; 5

2
3
2 ; 7

4 ; 9
4 ; 7

3 ; 5
2

are assumed to satisfy it. Then the most basic classification is based on the fulfilment
of the FMC condition. This classification is summarized in the table 1. There are three
classes of interactions which may account for leading contributions: CGV, CBC and IGV. The
interactions of the IBC class are always subordinate.

Note that the selection rules involve only the Bloch dispersion relations since the
susceptibility tensors were assumed to be periodic of the same common period. If the periods
of the susceptibility tensors do not match, the selection rules have to be slightly modified by
appropriate shifts (depending on the mismatch of the periods) of the quasimomenta in the
dispersion functions. Namely, the phase matching condition k = k′ + k′′(mod 2π) is replaced
by k ± g = k′ + k′′(mod 2π) if the nonlinearity is spatially modulated by sin(g · r). Note that
the corresponding modification of the phase φ�n(k,k′) from (109) to

φ�n(k,k′) = ωn̄(k) − ωn̄′(k′) − ωn̄′′(k − k′ ± g) (120)

clearly preserves the form of the GVC. This natural extension of the formalism accounts for
the so-called quasi-phase-matching method commonly used to enhance nonlinear interaction
through the FMC, see, for instance [30] and references therein.

A finer classification of nonlinear interaction is based on the index of interaction q0(k).
The possible values of the interaction index for all space dimensions d = 1, 2 and 3 are
collected in table 2.

Every entry in table 2 contains several values of q0. Since the interaction integral is of
the order �q0 as � → 0, the smaller values of q0 correspond to stronger nonlinear interactions.
The largest values of q0 for simple points correspond to non-degenerate simple critical points
with qT = d

2 . Higher degeneracy yields smaller q0 and, hence, stronger nonlinear interactions.
Note that for the homogeneous dispersionless medium the index q0 = d−1

2 is smaller than
all the presented values in table 2 [12]. This can be explained by the higher symmetry of a
homogeneous dispersionless medium, and, consequently, higher degeneracy of critical points
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Table 3. Spatial dimension d = 1, FMC is satisfied, DM � 2.

�q0 Phase canonical form DM HM Extra selection rules

�1/2 ±k̃2
1 , A1 0 1 non-deg.

�1/2 ±k̃2
1 , A1 0 1 SHG

Table 4. Spatial dimension d = 2, FMC is satisfied, DM � 4.

�q0 Phase canonical form DM HM Extra selection rules

�1 ±k̃2
1 ± k̃2

2 , A2
1 1 2 non-deg.

�5/6 ±k̃2
1 ± k̃3

2 , A1 × A2 0 1 deg.

�1 ±k̃2
1 ± k̃2

2 , A2
1 1 2 SHG

�3/4 ±k̃2
1 ± k̃4

2 , A1 × A3 0 1 SHG-deg.

Table 5. Spatial dimension d = 3, FMC is satisfied, DM � 6.

�q0 Phase canonical form DM HM Extra selection rules

�3/2 ±k̃2
1 ± k̃2

2 ± k̃2
3, A3

1 2 3 non-deg.

�8/6 ±k̃2
1 ± k̃2

2 ± k̃3
3, A2

1 × A2 1 2 deg.

�7/6 ±k̃2
1 ± k̃2

2 ± k̃4
3, A2

1 × A3 0 2 deg.2

�3/2 ±k̃2
1 ± k̃2

2 ± k̃2
3, A3

1 2 3 SHG

�5/4 ±k̃2
1 ± k̃2

2 ± k̃4
3, A2

1 × A3 1 2 SHG-deg.

�7/6 ±k̃2
1 ± k̃2

2 ± k̃6
3, A2

1 × A5 0 2 SHG-deg.2

Table 6. Spatial dimension d = 1, FMC is not satisfied, DM � 2.

�q0 Phase canonical form DM HM Extra selection rules

�3/2 ±k̃2
1 , A1 1 1 non-deg.

�4/3 ±k̃3
1 , A2 0 0 deg.

�3/2 ±k̃2
1 , A1 1 1 SHG

�5/4 ±k̃4
1 , A3 0 0 SHG-deg.

compared to a periodic medium. One can also see from the table that instantaneous interactions
for which the FMC does not hold, are weaker than the simple cumulative interaction.

7.1. Finer classification of nonlinear interactions

It follows from the previous sections that for a quadratic nonlinearity triads of modes can
interact or, in other words, two modes make an impact on the third one. Those modes are
parametrized by three band indices �n = (n̄, n̄′, n̄′′) and two quasimomenta k and k′, since the
third one k′′ = k − k′. The intensity of the mode interaction is ultimately determined by the
asymptotic behaviour of an oscillatory integral of the form

Iδ(τ ) =
∫ τ

0
dτ1

∫
|k̃−k′ |�δ

eiφ�n(k,k̃)τ1/� A(k̃, τ1) dk̃ ∼ �q0 , � → 0, (121)
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Table 7. Spatial dimension d = 2, FMC is not satisfied, DM � 4.

�q0 Phase canonical form DM HM Extra selection rules

�2 ±k̃2
1 ± k̃2

2 , A2
1 2 2 non-deg.

�11/6 ±k̃2
1 ± k̃3

2 , A1 × A2 1 1 deg.

�7/4 ±k̃2
1 ± k̃4

2 , A1 × A3 0 1 deg.2

�2 ±k̃2
1 ± k̃2

2 , A2
1 2 2 SHG

�7/4 ±k̃2
1 ± k̃4

2 , A1 × A3 1 1 SHG-deg.

�5/3 ±k̃2
1 ± k̃6

2 , A1 × A5 0 1 SHG-deg.2

Table 8. Spatial dimension d = 3, FMC is not satisfied, DM � 6.

�q0 Phase canonical form DM HM Extra selection rules

�5/2 ±k̃2
1 ± k̃2

2 ± k̃2
3 , A3

1 3 3 non-deg.

�7/3 ±k̃2
1 ± k̃2

2 ± k̃3
3 , A2

1 × A2 2 2 deg.

�9/4 ±k̃2
1 ± k̃2

2 ± k̃4
3 , A2

1 × A3 1 2 deg.2

�11/5 ±k̃2
1 ± k̃2

2 ± k̃5
3 , A2

1 × A4 0 2 deg.3

�13/6 ±k̃2
1 ± k̃3

2 ± k̃2k̃2
3 , A1 × D4 0 1 deg.3 + {HM = 1}

�5/2 ±k̃2
1 ± k̃2

2 ± k̃2
3 , A3

1 3 3 SHG.

�5/4 ±k̃2
1 ± k̃2

2 ± k̃4
3 , A2

1 × A3 2 2 SHG-deg.

�13/6 ±k̃2
1 ± k̃2

2 ± k̃6
3 , A2

1 × A5 1 2 SHG-deg.2

�17/8 ±k̃2
1 ± k̃2

2 ± k̃8
3 , A2

1 × A7 0 2 SHG-deg.3

�2 ±k̃2
1 + 4th order 0 1 SHG-deg.3 + {HM = 1}

with δ � 1 and the phase

φ�n(k, k̃) = ωn̄(k) − ωn̄′(k̃) − ωn̄′′(k − k̃). (122)

According to the theory of oscillatory integrals in a typical situation the asymptotic
approximation to Iδ(τ ) defined by (121) is determined by the leading terms in the Taylor
series expansion of φ�n(k, k̃) at the point k′. Hence, those leading terms, or their reduced (by a
proper change of variables) canonical polynomial forms, can be used for finer classification of
the interaction. We analysed all possibilities for the generic phase φ�n(k, k̃) defined by (122)
and collected the results in tables 3–8. The phase canonical forms in the tables are given in
the related reduced variables.

When classifying nonlinear interactions we consider only robust interactions that persist
under small perturbation of dispersion relations ωn̄(k). It is also assumed that there are no
‘hidden symmetries’. In our analysis we assumed no symmetries for ωn̄(k). The presence of
any symmetry, for instance ωn̄(k) = ωn̄(−k), would require a special analysis and further
extension of the tables.

We will use the following quantities to characterize the nonlinear interactions.
q0 is the interaction index defined for nonlinearly interacting modes. The relevant

nonlinear interaction is proportional to �q0 as � → 0 and, hence, the lesser the index q0

the stronger the nonlinear interaction. For instance, for any interacting modes which do not
satisfy the GVC, we have q0 = ∞ that indicates an extremely weak nonlinear interaction.
Keeping that in mind, we always assume that interacting modes satisfy the GVC.
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Table 9. The basic information of the interaction indices q0 and the dimension DM of the manifold
of interacting modes.

DM

Interaction index q0 0 1 2 3 4

Spatial dimension d = 1 — — 0 — —

Spatial dimension d = 2 — — 1
3

1
2 —

Spatial dimension d = 3 — — 3
4

5
6 1

Table 10. The information on the indices q0 of the strongest nonlinear interaction for anisotropic
dispersionless homogeneous and generic dispersive, in particular periodic, media.

Medium

The index q0 of the strongest interaction �q0 Ideal homogeneous Periodic

Spatial dimension d = 1 0 1
2

Spatial dimension d = 2 1
3

3
4

Spatial dimension d = 3 3
4

7
6

Mk,k′ is a manifold of interacting modes (described for the quadratic nonlinearity by pairs
of the quasimomenta k,k′) selected by certain selection rule/rules.

DM is the topological dimension ofMk,k′ which naturally does not exceed 2d . It indicates
‘how many’ modes are involved in the relevant interactions. The larger DM the ‘more modes’
have the particular interaction.

HM is the rank of the Hessian with respect to k′of the phase at points in Mk,k′ which
naturally does not exceed d . This indicates the degree of phase degeneration. The smaller the
quantity HM, the more modes in the relevant wavepacket will interact constructively resulting
in a stronger nonlinear interaction and, hence, in a lesser interaction index q0. In the tables
below we also use the following abbreviations.

GVC stands for the regular group velocity matching condition for a differentiable phase.
GVC(BC) stands for the group velocity matching condition at band-crossing points.
FMC stands for the frequency matching condition.
‘SHG’ stands for second harmonic generation.
‘non-deg.’ stands for non-degenerate points in the sense of the stationary phase method.
‘deg.’ stands for degenerate points in the sense of the stationary phase method.
‘deg.2’ and ‘deg.3’ stand for ‘double’ and ‘triple’ degenerate points having higher degrees

of degeneration compared with the regular degenerate points.
‘SHG-deg.’, ‘SHG-deg.2’ and ‘SHG-deg.3’ stand for the second harmonic generation when

the related points are degenerate or degenerate of higher degrees.
Am , Dm stands for types (classes) of singular points (see [6]).

7.2. Comparison of nonlinear interaction in dispersionless homogeneous and periodic media

For an ideal homogeneous dispersionless medium, whenω(k) = C|k|, the GVC coincides with
the phase matching condition and, hence, can always be satisfied. For a general anisotropic
homogeneous dispersionless medium one can show that FMC can also always be satisfied.
Assuming that both GVC and FMC hold we collected in table 9 the basic information
for the interaction indices and the dimension DM of the manifold of interacting modes.
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For comparison we collected, in table 10, the information regarding the indices q0 of
the strongest nonlinear interaction for anisotropic dispersionless homogeneous and generic
dispersive, in particular periodic, media. One can clearly see from table 10 that the introduction
of periodicity weakens the nonlinear interactions under study.

8. Medium dispersion and nonlinear interactions

It is well known that dispersive properties of a medium play an important role in nonlinear wave
interaction (for isotropic media see [36] and references therein). For the nonlinear regimes
under study the dispersion relations of the underlying linear medium are instrumental for
their formation. In particular, as it is shown in [12] and in section 7, the selection of stronger
interactions is ultimately based on the dispersion relations. From this perspective, one can view
the introduction of a spatial periodicity into the medium as a factor leading to a fundamental
change in the dispersion relations, namely formation of spectral bands with corresponding
periodic in k dispersion relations ωn(k).

As explained in the previous section, the introduction of spatial periodicity in an ideal
dispersionless homogeneous nonlinear medium would weaken nonlinear interactions. But in
the case of a dispersive homogenous medium such a general comparison is hard to make. The
origin of the dispersion is not essential for our analysis, and we can certainly state that for a
generic homogeneous nonlinear dispersive medium all nonlinear regimes we study are covered
by the above tables of indices.

If one has control over some parameters of the periodic medium, for instance, dimensions
of the primitive cell, then by making appropriate adjustments one can achieve nonlinear regimes
of higher level of nonlinear interactions according to the tables given in the preceding sections.
We have to remember though that our comparative analysis of the nonlinear interactions is
based on the fundamental assumption that the dispersion relations ωn(k) are generic and do
not have any ‘hidden’ symmetries unknown to us. If there are any symmetries one would have
to carry out an additional analysis. We expect any additional symmetry to produce stronger
nonlinear interactions.
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